Simultaneous Deep Stereo Matching and Dehazing with Feature Attention
نویسندگان
چکیده
منابع مشابه
Deep Stereo Matching with Dense CRF Priors
Stereo reconstruction from rectified images has recently been revisited within the context of deep learning. Using a deep Convolutional Neural Network to obtain patchwise matching cost volumes has resulted in state of the art stereo reconstruction on classic datasets like Middlebury and Kitti. By introducing this cost into a classical stereo pipeline, the final results are improved dramatically...
متن کاملLearning and Feature Selection in Stereo Matching
We present a novel stereo matching algorithm which integrates learning, feature selection, and surface reconstruction. First, a new instance based learning (IBL) algorithm is used to generate an approximation to the optimal feature set for matching. In addition, the importance of two separate kinds of knowledge, image dependent knowledge and image independent knowledge, is discussed. Second, we...
متن کاملA similarity measure for stereo feature matching
An approach to stereo feature matching is presented with the introduction of a similarity measure for evaluating and confirming a stereo match. The contributions of this study are reflected in (1) the development of a similarity measure which evaluates a stereo match based on feature locality and gray-level gradient associated with the feature; and (2) the use of a matching procedure that integ...
متن کاملFeature-Based Stereo Matching Using Graph Cuts
In this paper, we present a novel feature point based stereo matching algorithm with global energy minimization. The initial disparity map is estimated by considering matching SURF key points between two images inside each homogeneous colour region by an adaptive box matching approach. Next, we improve the initial disparity map with a RANSAC based plane fitting technique which relies on accurac...
متن کاملDeep Stereo Matching with Explicit Cost Aggregation Sub-Architecture
Deep neural networks have shown excellent performance for stereo matching. Many efforts focus on the feature extraction and similarity measurement of the matching cost computation step while less attention is paid on cost aggregation which is crucial for stereo matching. In this paper, we present a learning-based cost aggregation method for stereo matching by a novel sub-architecture in the end...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Vision
سال: 2020
ISSN: 0920-5691,1573-1405
DOI: 10.1007/s11263-020-01294-2